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We investigated the neural underpinnings of timbral, tonal, and rhythmic features of a naturalistic musical stimu-
lus. Participants were scanned with functional Magnetic Resonance Imaging (fMRI) while listening to a stimulus
with a rich musical structure, a modern tango. We correlated temporal evolutions of timbral, tonal, and rhythmic
features of the stimulus, extracted using acoustic feature extraction procedures, with the fMRI time series. Results
corroborate those obtained with controlled stimuli in previous studies and highlight additional areas recruited
during musical feature processing. While timbral feature processing was associated with activations in cognitive
areas of the cerebellum, and sensory and default mode network cerebrocortical areas, musical pulse and tonality
processing recruited cortical and subcortical cognitive, motor and emotion-related circuits. In sum, by combining
neuroimaging, acoustic feature extraction and behavioral methods, we revealed the large-scale cognitive, motor
and limbic brain circuitry dedicated to acoustic feature processing during listening to a naturalistic stimulus. In ad-
dition to these novel findings, our study has practical relevance as it provides a powerful means to localize neural
processing of individual acoustical features, be it those of music, speech, or soundscapes, in ecological settings.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Music is fundamental to humans across all cultures and is capable of
eliciting intense emotions (Salimpoor et al., 2011). Uncovering the neu-
ral underpinnings of music processing has become a central theme in
cognitive neuroscience in the past decade, as evidenced by the con-
stantly increasing corpus of studies on this topic. The intrinsically multi-
dimensional nature of music renders this task challenging. More
specifically, music comprises several perceivable features of varying
levels of abstraction, such as loudness, pitch (the organization of sounds
along a scale from low to high), rhythm (the perceptual organization of
sound events in time) and timbre (property that allows to distinguish
between different instrument sounds having the same pitch and loud-
ness). Perceiving polyphonic music involves automatic segregation of
the musical information in the brain. For instance, when listening to a
piece of music played by an orchestra we are able to distinguish one
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instrument's timbre from that of another, perceive the leading melody
by extracting pitch height, and feel the beat (Bregman, 1990; Janata et
al., 2002a, 2002b). In this process, domain-specific neural mechanisms
for acoustic feature analysis and integration as well as domain-general
neural circuits of attention and memory are required. In particular, hier-
archical processing within the auditory cortex going from more simple
to more complex features (Chevillet et al., 2011; Patterson et al., 2002),
and hemispheric specialization (Samson et al., 2011; Zatorre et al,
2002) for spectral vs. temporal acoustic variations, have been identified
as putative principles of functional organization of acoustic feature-
related processing. Previous neuroimaging studies of music have
attempted to identify brain structures involved in the perception of
music-related perceptual features, such as pitch (Patterson et al,
2002), sensory dissonance (Blood et al., 1999; Koelsch et al,, 2006),
rhythm (Chen et al., 2008; Grahn and Rowe, 2009), timbre (Caclin et
al., 2006; Halpern et al,, 2004), and key (Janata et al., 20023, 2002b).
However, while these studies have successfully identified brain regions
participating in processing of individual musical features they have re-
lied on controlled auditory paradigms in which these features have
been presented in isolation and manipulated artificially. Although a
few studies have investigated brain responses during continuous listen-
ing to relatively simple musical stimuli (Janata et al., 2002a, 2002b;
Schaefer et al., 2009), it has not been previously studied how the
human brain processes, in parallel, the multitude of musical features



3678

when participants are listening to a record of real orchestra music dur-
ing neuroimaging.

In the visual modality, recent evidence suggests that the brain pro-
cesses visual stimuli presented in a more ecological setting differently
than when presented in conventional controlled settings (Hasson et
al., 2004). Assuming that this finding is generalizable across sensory
modalities, one could expect that the majority of studies in the audi-
tory modality, in which acoustic features were artificially manipulat-
ed, may have revealed an incomplete picture of brain function related
to musical feature processing. Therefore, studying music listening as a
continuous process using naturalistic stimuli could provide more ac-
curate accounts of the processing of musical features in the brain.

We employed a stimulus-wise and task-wise more ecological setting
in which participants freely listened to real music without performing
any other task, in order to determine the neural mechanisms and struc-
tures responsible for musical feature processing under realistic condi-
tions. To tackle the complexity of the problem, we introduced a novel
interdisciplinary approach combining neuroimaging with computa-
tional acoustic feature extraction and behavioral psychology. As music
stimulus we chose the modern tango Adios Nonino by Astor Piazzolla.
The participants were scanned with fMRI while listening to this piece.
Temporal evolutions of acoustic components representing timbral,
tonal and rhythmic features of the stimulus were computationally
extracted and validated via a perceptual experiment. Following this
we performed correlation analyses of the time series of the individual
acoustic components and the time series of the BOLD signal.

In light of previous studies (Samson et al., 2011), we hypothesized
that timbral components would activate mainly sensory areas, such as
the superior temporal gyrus (STG) and the Heschl's gyrus (HG). More-
over, we expected that the spectrally varying timbral components
would activate particularly the caudolateral and anterior superior
temporal regions, respectively (see Samson et al., 2011 for an over-
view). In addition, we predicted hemispheric lateralization, in partic-
ular, that right hemispheric regions would show larger areas
involved in the processing of these features (Zatorre et al., 2002). Pro-
cessing of tonality-related features was expected to recruit areas in
the brain formerly known to be neural substrates of tonality
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processing, such as the rostromedial prefrontal cortex (Janata et al.,
2002a, 2002b). In addition, as tonality processing draws on long-
term knowledge of hierarchical tonality structures (Krumbhansl,
1990), we expected the brain areas related to memory processing,
such as the hippocampus (see Burianova et al., 2010 for an overview)
to be activated. We hypothesized rhythm-related features to recruit,
in addition to areas in the auditory cortex, cortical and subcortical
areas related to motor processing, such as the premotor and supple-
mentary motor areas, and subcortical structures involved in the pro-
cessing of time intervals such as the basal ganglia (Harrington et al.,
1998; Janata and Grafton, 2003; Rao et al., 2001; Schwartze et al.,
2011). Furthermore, as tonal and rhythmic features are known to elicit
expectations in listeners (Janata, 2005; Zanto et al., 2006), we hypoth-
esized them to shape activations in the higher-order areas in the brain,
such as the supplementary motor areas, which are known to be in-
volved in perceptual tasks having an anticipatory component
(Schubotz and von Cramon, 2002).

Materials and methods
Participants

Eleven healthy participants (with no neurological, hearing or psy-
chological problems) with formal musical training participated in the
study (mean age: 23.24-3.7 SD; 5 females). We chose participants
with formal musical training as it has been shown that musicians dis-
play stronger neural responses to various musical features in compari-
son to non-musicians (Pantev et al., 2001; Wong et al., 2007). Five
participants were educated in and performed mainly classical music,
two musicians were trained in folk and jazz music, and the rest were
playing mainly pop/rock music. Four musicians played string instru-
ments, three percussive instruments, two wind instruments, and two
keyboard instruments. All participants, except one, were also able to
play other instruments along with their main one. These musicians
started to play their main instrument on average at 9.1 43.4 SD years
of age, and their second instrument at 10.5 4-3.7 SD years, collecting a
total amount of years of training equal, on average, to 16.1+6 SD.

PC5 PC 6 PC7 PC 38 PC9

Fig. 1. Loadings of the features on the first 9 Principal Components (PC) as a result of principal component analysis with varimax rotation. The x-axis indicates principal component
number in order of decreasing amount of variance explained. The shade of gray indicates the respective loading with white indicating the maximum and black the minimum. PCs 4, 5,
and 8 are not labeled as they failed to correlate with the perceptual ratings and thus were excluded from subsequent analyses.
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Furthermore, they declared to practice on average 2.5+ 1.2 SD hours
per day at the time of the experiment.

Stimulus

The stimulus used in the experiment was the tango Adios Nonino by
Astor Piazzolla of a duration of 8 min and 32 s. This piece of music was
selected due to its high range of variation in several musical features
such as dynamics, timbre, tonality and rhythm, while having an appro-
priate duration for the experimental setting used.

fMRI measurements

The fMRI measurements were conducted with the 3-T scanner
(3.0 T Signa VH/I General Electric) at the Advanced Magnetic Imaging
(AMI) Centre of the Aalto University and were approved by the local
ethical committee. To prevent postural adjustments and to attenuate
the noise and vibration of the scanner, foam cushions were placed
around the arms of the participants. Music was presented through
audio headphones with about 30 dB of gradient noise attenuation.
Further attenuation was achieved with cotton inserted in the headset.
Thirty-three oblique slices covering the whole brain (field of view
200 x 200 mm; 64 x 64 matrix; slice thickness 4 mm; gap 0 mm) were
acquired using a single-shot gradient echo-planar imaging (EPI) se-
quence (TR=2s; echo time, 32 ms; flip angle, 75°) sensitive to blood
oxygenation level-dependent (BOLD) contrast.

During the fMRI measurement, participants listened to the stimulus
presented at an average sound level of 80 dB. The participants were
instructed to stay still and to relax while listening to the musical stimulus
and to maintain their gaze on the screen. Subsequent to a short break after
fMRI recording, anatomical T1 weighted MR images (field of view
260x 260 mm; 256 x 256 matrix; thickness 1 mm; spacing 0 mm) were
acquired.

fMRI preprocessing

Whole-brain image analysis was carried out using Statistical Paramet-
ric Mapping 5 (SPM5—http://www.filion.uclac.uk/spm). Images for each
subject were realigned, spatially normalized into the Montreal Neurolog-
ical Institute template (12 parameter affine model, gray matter segmenta-
tion; realignment: translation components <2 mm, rotation components
<2°), and spatially smoothed (Gaussian filter with FWHM of 6 mm). fMRI
responses were detrended using a high-pass filter with a cut-off frequen-
cy of .008 Hz, which conforms to the standards used to reduce the effects
the scanner drift typically occurring at a timescale of 128 s (Smith et al.,
1999). Following this, Gaussian smoothing was performed as it provides
a good compromise between efficiency and bias (Friston et al., 2000).
The smoothing kernel had a width of 5 s, which was found to maximize
the correlation between the frequency response of the HRF and the
smoothing kernel. The effect of the participants’ movements was re-
moved by modeling the 6 movement parameters as regressors of no
interest.

Acoustic feature extraction and processing

This section focuses on the computational analyses performed on
the audio stimulus. We chose acoustic features that broadly capture
the timbral, tonal and rhythmic aspects of the stimulus (see
Appendix A). The feature set, comprising twenty-five features, can be
generally classified into two categories based on the duration of the
analysis-window used during the extraction process, that is, short-
term features and long-term features. The short-term features, which
encapsulate timbral properties of the stimulus, were obtained by
employing short-time analysis using a 25 ms window, which is in the
order of the commonly used standard window length in the field of
Music Information Retrieval (MIR) (Tzanetakis and Cook, 2002). These

Table 1
Mean inter-subject correlations, Cronbach alphas and number of participants included
in subsequent analyses for each of the perceptual scales.

Perceptual scale Mean Inter-subject r Cronbach alpha N
Fullness .87 19
.28

Brightness 27 .87 20
Timbral complexity 34 .90 18
Rhythmic complexity 30 .90 21
Key clarity 54 .96 21
Pulse clarity .55 .96 21
Event synchronicity 25 .85 17
Activity .61 97 20
Dissonance .55 .96 19

short-term features comprise the zero crossing rate, spectral centroid,
high energy-low energy ratio, spectral spread, spectral roll-off, spectral
entropy, spectral flatness (Wiener entropy), roughness, RMS energy,
spectral flux, and Sub-Band Flux (10 coefficients).

The long-term features encapsulate context-dependent aspects of
music, such as tonality and rhythm and were calculated using a lon-
ger time-window of analysis, that is, 3 s. This window length was
chosen because it corresponds to typical estimates of the length of
the auditory sensory memory (Fraisse, 1982). The long-term features
include pulse clarity, fluctuation centroid, fluctuation entropy, mode
and key clarity. All the features were extracted using the MIRToolbox
(Lartillot and Toiviainen, 2007) in the MATLAB environment. After
obtaining the time series of all the features, to make the data compa-
rable to the fMRI data, we processed the data as discussed below.

First, to account for the lag caused due to the hemodynamic re-
sponse in the fMRI data, the acoustic feature time series were con-
volved with a double-gamma HRF. The convolved acoustic feature
time series were then filtered employing the detrending filter used
in the post-processing stage of the fMRI data. This operation was per-
formed to eliminate those low-frequency components whose eventu-
al brain correlates were eliminated during the preprocessing stage of
the fMRI time series. For subsequent analysis we chose to use features
of only the part of the stimulus that contained music, therefore we ex-
cluded the last 24 s of the stimulus due to the presence of applause
and the first 26 s corresponding to the length of the HRF in order to
avoid any artifacts caused due to the convolution operation. Follow-
ing this, all the features were downsampled by retaining one sample
for every 160 samples to match the sampling rate of the fMRI data
(.5 Hz). As a result, the length of the feature vectors was 231 samples
corresponding to 7 min and 42 s.

In order to reduce the number of features in the feature set, we
performed a principal component analysis (PCA). The first 9 PCs
were included in subsequent analyses as they explained 95% of the
variance. Fig. 1 displays the loadings for these 9 PCs.

Table 2
Pearson's 1 correlation coefficients between perceptual rat-
ings and respective PC scores.

Perceptual scale r
Fullness 80"
Brightness 55
Timbral complexity 53
Rhythmic complexity 28
Key clarity 53"
Pulse clarity 51
Event synchronicity 30
Activity T7F
Dissonance 30

* p<.05. ™ p<.01. " p<.001.
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Fig. 2. Selected slices depicting the areas of the brain that displayed significant mean inter-subject correlation (p<.001).

As visible in Fig. 1, the first PC has the highest loadings from Sub-
bands No. 2 and No. 3 Flux. The presence of spectral fluctuations in
lower bands of the spectrum has been associated previously to perceptu-
al ‘Fullness’ (Alluri and Toiviainen, 2010). The second PC, with the high-
est loadings from spectral centroid, spectral roll-off, high energy-low
energy ratio and zero crosssing rate measures the perceptual ‘Brightness’
(Alluri and Toiviainen, 2010, 2012). PC3 represents the spread and
flatness (Wiener entropy) of the spectrum. In perceptual terms, it can
be regarded to represent timbral complexity. As can further be seen
from Fig. 1, each of the PCs from 4 through 8 has high contributions
from only one of the long-term features representing ‘Mode’, ‘Rhythmic
Complexity’, ‘Key Clarity’, ‘Pulse Clarity’, and ‘Event Synchronicity’ re-
spectively (see Appendix A for details). PC 9 has the highest loadings
from roughness and flux of the high end of the spectrum. This can be
regarded to represent ‘Activity’ (Alluri and Toiviainen, 2010, 2012).
The loudness feature of the stimulus, characterized by RMS energy, failed
to load highly onto any of these PCs suggesting that none of the PCs cor-
related notably with RMS energy.

To validate the perceptual relevance of the labels given to the
acoustic components, we conducted a perceptual listening experi-
ment where participants were asked to rate selected segments repre-
senting varying levels of the acoustic components on various
perceptual scales. The procedure is explained in detail as follows.

Perceptual experiment

Stimuli

We selected nine sets of stimuli comprising 30 6-second segments
each, obtained from the stimulus used in the fMRI experiment. For
each of the sets, the excerpts were chosen to represent varying levels
of one of the acoustic components. The acoustic component repre-
senting mode was excluded, because according to initial analysis of
the fMRI data it failed to display any significantly correlating areas.
Additionally, we wanted to limit the duration of the experiment to
avoid fatigue effects. To obtain the excerpts, for each acoustic compo-
nent, the raw acoustic features were multiplied by the respective PC
loadings. Subsequently, we averaged the hence obtained PC score
time series within 6-second moving windows using a hop-size of
1 s. Next, each of these averaged time series were rank ordered and
sampled (n=30) equidistantly in order to obtain segments that
represented varying levels of the respective PC scores and spanned
the entire range of variation.

Participants

Twenty-one musicians (15 females, age M =23.7 years, SD=3.5)
participated in rating the music excerpts. All reported having formal
music education (M= 15.8 years, SD==6.1 years, minimum = 3 years).
They practiced on average 11.2 (SD=9) hours per week. Seven
reported familiarity with the piece Adios Nonino. All of the participants
reported listening to music the average being 12 h/week. None of
these participants took part in the fMRI experiment. However, the two
groups shared similar demographic properties in terms of their ages
as well as their musical and cultural backgrounds.

Procedure

The participants were given written instructions, following which
the listening experiment took place in a silent room. To present the
stimuli and obtain the ratings, a graphical interface was developed
in Max/MSP. The experiment was divided into nine sections, in each
of which the participants were asked to rate the stimuli according
to one of the scales. Each scale was divided into 9 levels with the ex-
tremes of the scale indicating low and high values of the perceptual
scale (e.g: 1 = Low Pulse Clarity, 9 = High Pulse Clarity), from
which the subject could choose the level that best described the
music excerpt presented. The participants were able to listen to
each excerpt as many times as they wished. The order of presentation
of each of the sections and the music excerpts in each section was
randomized. Prior to the actual experiment, the participants were
allowed to familiarize themselves with the working of the interface.

Results

The perceptual ratings were initially checked for inconsistencies and
outliers. First, for each scale, the participants with a negative mean
inter-subject correlation were eliminated. Following this, participants
with a mean inter-subject correlation two SDs below the overall mean
inter-subject correlation were eliminated. As a result, one to four partic-
ipants were excluded for each scale. As visible in Table 1, Cronbach's
alpha revealed high agreement between the participants' ratings, indi-
cating fairly consistent opinions among listeners with respect to the
perceptual scales. Therefore, for subsequent analysis, the individual rat-
ings for each scale were averaged across the participants. As can be seen
from Table 2, significant correlations were observed between the rating
scales of Fullness, Brightness, Timbral Complexity, Key Clarity, Pulse
Clarity and Activity and the respective acoustic components. The
remaining scales of Rhythmic Complexity and Event Synchronicity
failed to correlate significantly with the corresponding acoustic compo-
nents and were hence excluded from further analyses. Therefore, the
temporal evolutions of only the corresponding principal component
scores of these six PCs were used for further analysis and will hence-
forth be referred to as acoustic components.

Statistical analysis

Initially, the inter-subject consistency of the fMRI data was checked
using mean inter-subject correlation as a measure. The significance of
the correlations was estimated by means of a Monte Carlo approach.
Following this, we employed the correlation analysis approach utilized
by He et al. (2008). First, for each participant, the Pearson correlation
coefficients (r) were obtained per voxel and per acoustic component.
The r maps were then converted to respective Z-score maps using Fish-
er's Z transformation, normalized by the factor 1/~ (df—3), where df
represents the estimated number of effective degrees of freedom. The
effective degrees of freedom were estimated using the approach de-
scribed by Pyper and Peterman (1998) (see Appendix B for details).
As a result, the effective degrees of freedom varied from a minimum
of 29 (correction factor=7.97) to a maximum of 68 (correction fac-
tor =3.40) across the acoustic components.
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For each acoustic component, in order to obtain the group maps
we employed the combining tests procedure described by Lazar
(2008). In this approach, individual Z-score maps were first con-
verted to p-maps and were then pooled using the Fisher's p-value
technique (Fisher, 1950) to create the group maps. The individual
p-values of each voxel were pooled using the equation below to ob-
tain a T-statistic (Eq. (1)) that is modeled as a Chi-square distribu-
tion with 2k degrees of freedom where k represents the number of
participants.

59 (2012) 3677-3689 3681

The group maps hence obtained for each component were thre-
sholded at a significance level of p<.001. Following this, in order to min-
imize Type I errors, we corrected for multiple comparisons using cluster
size thresholding. To determine the thresholds for multiple compari-
sons correction, we performed a Monte Carlo simulation of the ap-
proach described by Ledberg et al. (1998) (see Appendix B). As result,
we obtained a cluster size threshold of 22 voxels for p<.001 (Z=3.29).

Results

Fig. 2 displays the results of the correlation analysis performed to

k
T=-2) logp;. (1) test the consistency between the participants' fMRI responses. As can
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Fig. 3. Lateral and mid-sagittal views of the left and right hemispheres of the brain showing regions correlating significantly with timbral components. The significance threshold for
the correlations was set at p=.001. Cluster correction was performed at a significance level of p=.001 (Z=3.29) corresponding to a cluster size of 22 voxels. The exact Z-values are
listed in Table 3. The areas indicated in red and blue correspond to the brain areas that correlated positively and negatively to each of the timbral components, respectively.
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Table 3
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Correlation results between acoustic components and brain activity using a significance threshold p<.001. The clusters were obtained using the 18-connectivity scheme employed
in SPM. The significant voxels were cluster corrected at Z>3.29 (p<.001 and cluster size >22). The coordinates are in Talairach space and indicate the location of the global max-
imum within each cluster. For each cluster, ROI analysis was performed using MarsBar. Each cluster is numbered and named after the ROI containing the voxel with the maximal Z-
value. The sub-clusters obtained from the ROI analysis are displayed under each main cluster. The coordinates for the sub-clusters are in Talairach space and indicate the location of

the local maximum within each cluster.

Right hemisphere BA k X Y z Z-value Left hemisphere BA k X y z Z-value
(A) Fullness
Positive correlation
1. Superior temporal gyrus 22 2325 51 —14 1 7.35 5. Superior temporal gyrus 22 2283 —50 —21 3 7.34
Superior temporal gyrus 1646 51 —14 1 7.35 Superior temporal gyrus 1137 —50 —21 3 7.34
Heschl's gyrus 203 50 —15 4 6.82 Heschl's gyrus 80 —53 —15 8 5.20
Insula 17 50 —4 0 4.70 Middle temporal gyrus 890 —50 —19 1 6.94
Postcentral gyrus 8 63 —15 14 378
Rolandic operculum 193 40 —28 16 6.13 Rolandic operculum 64 —44 —28 14 6.23
Supramarginal gyrus 100 50 —34 24 4,96 Supramarginal gyrus 13 —51 —25 14 4,71
Superior temporal pole 20 53 2 -5 438
Cerebellum
2. Inferior semi-lunar lobule 76 30 —78 —35 4.25
VIIB 1 26 —78 —36 3.58
Crus II 75 30 —78 —-35 4.25
3. Declive 39 32 —63 —17 3.76 6. Declive 39 —14 —-73 —13 3.75
VI 39 32 —63 —17 3.76 VI 39 —14 —73 —13 3.75
4. Tonsil 40 6 —45 —38 3.60
IX 23 16 —47 —40 341
7. Uvula 79 —28 —63 —24 433
VI 28 —28 —61 —24 418
Crus 1 50 —28 —63 —24 433
VIIB 22 -8 —-71 —30 3.95
VIl 2 —8 —69 —30 3.50
8. Pyramis 66 —28 —68 —34 410
VIIB 10 —28 —68 —34 410
Vil 2 —26 —66 —34 345
Crus II 54 —30 —70 —34  4.09
9. Pyramis 23 —20 —83 —31 4.01
Crus II 23 —-20 —83 —31 4.01
Negative correlation
1. Postcentral gyrus 2 67 44 —23 49 3.66 3. Postcentral gyrus 3 191 —36 —31 48 419
Postcentral gyrus 67 44 —23 49 3.66 Postcentral gyrus 83 —36 —31 48 419
2. Inferior parietal lobule 40 31 40 —38 55 3.81 Inferior parietal gyrus 95 —32 —41 43 3.70
Inferior parietal gyrus 12 40 —38 52 341
Superior parietal gyrus 9 40 —38 53 3.66
Postcentral gyrus 10 40 —38 55 3.81
4, Middle frontal gyrus 11 27 —26 38 —19 4,09
Inferior orbitofrontal gyrus 11 —30 42 —17 3.54
5. Superior parietal lobule 7 165 —18 —61 56 3.71
Superior parietal gyrus 75 —18 —61 56 3.71
Postcentral gyrus 18 —24 —42 56 3.58
Precuneus 72 —16 —61 58 3.53
(B) Brightness
Positive correlation
1. Superior temporal gyrus 22 3166 50 —19 3 8.13 6. Superior temporal gyrus 22 3245 —55 —15 3 8.13
Superior temporal gyrus 2070 50 —19 3 8.13 Superior temporal gyrus 1516 —55 —15 3 8.13
Heschl's gyrus 225 48 —15 4 8.13 Heschl's gyrus 153 —53 —15 8 7.73
Insula 51 50 —4 0 6.16 Insula 13 —46 —8 -1 4.50
Postcentral gyrus 27 63 —15 14 5.01 Postcentral gyrus 3 —63 —21 16 341
Rolandic operculum 274 40 —28 16 6.80 Rolandic operculum 109 —46 —28 14 6.89
Supramarginal gyrus 99 48 —34 24 4,95 Supramarginal gyrus 16 —63 —23 14 5.37
Middle temporal gyrus 90 46 —33 3 417 Middle temporal gyrus 1192 —59 —12 -3 8.13
Temporal pole 74 51 2 —7 5.90 Temporal pole 11 —57 5 -9 4.40
2. Precentral Gyrus 6 64 55 0 41 4,05 7. Precentral gyrus 6 28 —55 0 42 439
Precentral gyrus 53 55 0 41 4.05 Precentral gyrus 17 —55 0 42 4.39
Middle frontal gyrus 11 51 -1 50 3.69 Postcentral gyrus 10 —55 0 41 4.21
3. Putamen 38 24 11 —6 3.63
Putamen 36 24 11 —6 3.63
4. Putamen 30 14 10 1 3.38
Putamen/pallidum 7 14 6 —4 3.33
Putamen 10 22 12 5 3.26
Cerebellum
5. Declive 186 —32 —63 —22 434
VI 102 —28 —59 —22 4.28
Crusl 84 —32 —63 —22 434
Negative correlation
1. Medial frontal gyrus 9 26 —20 42 15 3.68
Middle frontal gyrus 7 —20 43 14 3.63
Superior frontal gyrus 2 —20 42 18 3.31
2. Posterior cingulate 29 26 —6 —44 10 3.50
Calcrine 4 —6 —44 8 3.44
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Right hemisphere BA k X Y z Z-value Left hemisphere BA k X y z Z-value
Posterior cingulate 5 —6 —40 8 3.36
Precuneus 9 —6 —44 10 3.50
(C) Activity
Positive correlation
1. Superior temporal gyrus 22 2368 51 —14 1 7.92 5. Superior temporal gyrus 22 2378 —50 —21 3 7.48
Superior temporal gyrus 1632 51 —14 1 7.92 Superior temporal gyrus 1185 —50 —21 3 7.48
Heschl's gyrus 211 50 —15 4 7.31 Heschl's gyrus 91 —53 —15 8 5.58
Rolandic operculum 209 40 —28 16 6.26 Rolandic operculum 73 —44 —28 14 5.87
Supramarginal gyrus 101 50 —34 24 4.63 Supramarginal gyrus 11 —53 —25 14 4.36
Temporal pole 24 51 2 -5 4.67 Temporal pole 15 —57 7 -9 3.78
Insula 24 50 —4 0 5.45 Middle temporal gyrus 893 —50 —19 1 7.09
Postcentral gyrus 8 63 —15 14 3.87
2. Medial frontal gyrus 11 22 8 61 —15 3.69
Medial frontal gyrus 22 8 61 —15 3.69
Cerebellum
3. Inferior semi-lunar lobule 70 30 —-79 —-35 4.42 6. Uvula 91 —30 —63 —24 4.13
VIIB 1 26 —78 —36 3.60 VI 19 —28 —61 —24 396
Crusll 69 30 —-79 —35 442 Crusl 72 —30 —63 —24 413
4. Declive 50 32 —63 —15 3.89 7. Pyramis 106 —32 —70 —32 4.11
VI 50 32 —63 —15 3.89 VIIB 8 —28 —68 —34 386
VIII 1 —26 —66 —34 340
Crusll 97 —32 —70 —32 4.11
8. Declive 57 —16 —-73 —13 3.91
VI 57 —16 —-73 —13 3.91
Negative correlation
1. Postcentral gyrus 3 46 42 —25 49 3.51 2. Postcentral gyrus 3 137 —36 —31 48 4.26
Postcentral gyrus 46 42 —25 49 3.51 Postcentral gyrus 72 —36 —31 48 4.26
Inferior parietal lobule 56 —38 —35 44 3.64
3. Superior parietal lobule 7 105 —18 —53 58 3.61
Superior parietal lobule 46 —18 —53 58 3.61
Postcentral gyrus 9 —24 —42 56 343
Precuneus 50 —16 —53 58 347
4. Middle frontal gyrus 6 62 —32 8 46 3.63
Middle frontal gyrus 24 —32 8 46 3.63
Precentral gyrus 38 —32 6 44 3.60
5. Superior frontal gyrus 9 24 —20 52 25 3.48
Superior frontal gyrus 24 —20 52 25 3.48
Middle frontal gyrus 19 —22 52 27 3.48
(D) Timbral complexity
Positive correlation
1. Superior temporal gyrus 22 1804 53 —8 —1 7.05 2. Superior temporal gyrus 21 1787 —55 —12 —1 6.93
Superior temporal gyrus 1418 53 -8 —1 7.05 Superior temporal gyrus 973 —55 —12 —1 6.93
Heschl's gyrus 163 51 —-13 4 6.41 Heschl's gyrus 64 —50 —-17 8 5.06
Rolandic operculum 104 65 -5 8 4.83 Rolandic operculum 22 —42 —28 14 4.20
Middle temporal gyrus 4 69 —25 0 3.71 Middle temporal gyrus 659 —57 —14 -1 6.78
Insula 9 50 —4 0 4.50
Postcentral gyrus 9 65 —11 13 3.66
Temporal pole 43 53 2 -7 4,90
Cerebellum
3. Declive 27 —26 —61 —22 4.19
VI 26 —26 —61 —22 4.19
Crusl 1 —30 —63 —22 3.13
(E) Key clarity
Negative correlation
1. Precentral gyrus 6 306 59 —4 28 4.67
Postcentral gyrus 256 59 —4 28 4.67
Precentral gyrus 44 63 3 22 4,09
Rolandic operculum 1 61 -3 13 3.25
Supramarginal gyrus 1 55 —12 26 3.31
2. Postcentral gyrus 3 82 48 —15 58 4.29 6. Postcentral gyrus 3 142 —44 —18 58 4.12
Postcentral gyrus 24 50 —15 56 4.14 Postcentral gyrus 69 —44 —18 58 4.12
Precentral gyrus 58 48 —15 58 429 Precentral gyrus 72 —42 —17 58 4.03
3. Postcentral gyrus 43 80 50 —14 21 4.29 7. Postcentral gyrus 43 86 —46 -9 17 4.23
Insula 15 34 —-17 17 4.29 Heschl's gyrus 4 —46 —-11 10 3.39
Rolandic operculum 62 50 —14 21 429 Postcentral gyrus 31 —53 —13 21 3.67
Rolandic operculum 45 —46 -9 17 4.23
4. Superior frontal gyrus 6 29 12 —12 67 3.83 8. Superior frontal gyrus 9 57 -8 52 31 3.82
Superior frontal gyrus 3 14 —12 67 3.23 Superior frontal gyrus 31 —10 52 31 3.74
Paracentral lobule 1 8 —18 69 3.13 Medial frontal gyrus 26 —8 52 31 3.82
Precentral gyrus 3 14 —14 67 3.52
Supplementary motor area 22 12 —12 67 3.83
9. Claustrum 22 —34 —-11 4 3.79
Insula 12 —36 —13 4 3.68

(continued on next page)
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Right hemisphere BA k X Y z Z-value Left hemisphere BA k X y z Z-value
Putamen 1 —32 —11 4 3.15
5. Cingulate gyrus 24 50 14 —6 44 3.66
Middle cingulate gyrus 27 14 —6 44 3.66
Supplementary motor area 22 14 —4 44 3.54
(F) Pulse clarity
Positive correlation
1. Superior temporal gyrus 22 173 51 —8 0 430 3. Superior temporal gyrus 22 97 —61 —17 3 3.73
Superior temporal gyrus 153 51 —8 0 430 Superior temporal gyrus 74 —61 —17 3 3.73
Heschl's gyrus 19 53 —10 4 3.73 Middle temporal gyrus 23 —55 —16 1 3.63
Insula 1 50 —4 0 3.11
2. Superior temporal gyrus 41 26 40 —30 16 3.37
Heschl's gyrus 2 38 —30 16 3.23
Rolandic operculum 3 40 —-30 18 3.26
Superior temporal gyrus 21 40 —30 16 3.37
Negative correlation
5. Claustrum 78 —32 -8 -8 4.15
Amygdala 5 —28 —8 —10 3.91
Hippocampus 7 —30 —10 —10 3.76
Insula 6 —36 —8 —8 342
Putamen 11 —-30 —10 —6 3.75
1. Cingulate gyrus 32 50 2 6 40 3.72 6. Cingulate gyrus 32 38 -2 6 40 4.01
Cingulum mid 40 2 6 40 3.72 Cingulum mid 18 -2 6 40 4,01
Supplementary motor area 10 4 6 42 3.40 Supplementary motor area 20 -2 8 40 3.94
2. Precuneus 7 23 12 —48 59 3.58
Precuneus 15 12 —48 59 3.58
Superior parietal lobule 8 14 —48 59 3.42
3. Insula 13 22 38 10 9 3.46 7. Insula 13 28 —38 12 5 3.57
Insula 13 38 10 9 3.46 Insula 28 —38 12 5 3.57
Inferior frontal operculum 9 40 10 11 3.44
4. Inferior temporal gyrus 97 48 —48 —18 4,10
Fusiform gyrus 7 44 —47 —16 341
Inferior temporal gyrus 90 48 —48 —18 4.10

significant mean inter-subject correlations with the maximum found
in the auditory cortices (r=.64, p<.0001). Following this, we per-
formed correlation analysis between the fMRI data and acoustic com-
ponents. As described in Perceptual experiment, perceptual
validation of the acoustic components resulted in a compact set of
six acoustic components that represented the temporal evolution of
the main timbral, tonal, and rhythmic features in the stimulus. Tim-
bral components comprised perceived Fullness, Activity, Brightness,
and Timbral complexity of the stimulus. Tonal and Rhythmic compo-
nents comprised Key Clarity and Pulse Clarity respectively (audio ex-
cerpts depicting examples of low levels and high levels of all six
acoustic components can be found as Supplementary material:
AudiomaterialS1). First-level analysis comprised correlating these
six components with fMRI time series at an individual level. Follow-
ing this, second-level analysis involved pooling individual results to
obtain group maps for each acoustic component. The results are dis-
cussed below.

Timbral feature processing in the brain

Correlation analyses revealed that the presence of high values
in all the timbral features namely Fullness, Brightness, Timbral
Complexity and Activity, was associated with increased neuronal
activation in the bilateral STG (BA 22) (see Fig. 3). Additionally, a
lateralization effect was found wherein the right hemisphere dis-
played positive correlations with timbral components in larger
proportions of the HG, rolandic operculum, supramarginal gyrus,
and superior temporal pole than the left hemisphere (see
Table 3). In contrast, the left hemispheric middle temporal gyrus
had a larger proportion displaying such a correlation than its
right hemispheric counterpart (see Table 3 for details).

Another group of activations was found in the cerebellum. In par-
ticular, high values of Fullness and Activity in the stimulus were

associated with increased activation in the declive, uvula, and pyra-
mis (lobule VI, Crus I and II). Increase in the timbral components of
Brightness and Timbral Complexity was associated with increased ac-
tivation in the declive only.

Outside of the auditory cortex and the cerebellum, we observed cer-
ebrocortical areas correlating negatively with the timbral components.
In particular, decreased Activity and Fullness was found to be associated
with increased activations in the bilateral postcentral gyrus (BA 2 and
3), and the left precuneus (BA 7). In addition, low levels of Fullness
were associated with increased activations in the bilateral inferior pari-
etal gyrus (BA 40), and those of Activity were associated with increased
activations in the left superior frontal gyrus (BA 9) and left medial fron-
tal gyrus (BA 6). Increased activations in the right medial frontal gyrus
(BA 11) were found to be associated with increasing Activity.

Furthermore, increase in Brightness recruited the bilateral precen-
tral gyrus (BA 6), and the right putamen. Reduced levels of Brightness
in the stimulus, on the other hand were associated with increased ac-
tivations in two left hemispheric clusters of the medial frontal gyrus
(BA 9) and the posterior cingulate cortex (BA 29). No negative corre-
lations were found for Timbral Complexity.

Rhythmic and tonal feature processing in the brain

High levels of Pulse Clarity were linked with increased activation
in the bilateral STG (BA 22), as well as the right primary auditory cor-
tex (BA 41) (see Fig. 4 and Table 3). In contrast, decreased Pulse Clar-
ity recruited the right inferior temporal gyrus (ITG, BA 37) and
precuneus (BA 7). In addition, decreased Pulse Clarity was associated
with high levels of activation in several subcortical limbic areas in-
cluding the left hemispheric amygdala, hippocampus and putamen,
the bilateral mid-cingulate gyrus (BA 32) in the vicinity of the supple-
mentary motor area, and the bilateral insula (BA 13).
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Fig. 4. Lateral and mid-sagittal views of the left and right hemispheres of the brain showing regions correlating significantly with Pulse Clarity and Key Clarity components. The
significance threshold for the correlations was set at p=.001. Cluster correction was performed at a significance level of p=.001 (Z=3.29) corresponding to a cluster size of 22
voxels. The exact Z-values are listed in Table 3. The areas indicated in red and blue correspond to the brain areas that correlated positively and negatively to each of the components,

respectively.

The presence of unclear key (i.e., low levels of Key Clarity) was
found to be associated with increased activation in cortical and sub-
cortical areas such as parts of the bilateral precentral gyrus (BA 3),
the right mid-cingulate gyrus (BA 24) in the vicinity of the supple-
mentary motor area and right postcentral (BA 6) gyrus, and the left
hemispheric superior frontal gyrus (BA 9), the left insula and the bi-
lateral rolandic operculum (see Fig. 4). No positive correlations
were observed for Key Clarity.

Discussion

In the present study, we investigated the neural correlates of tim-
bral, tonal, and rhythmic feature processing of a naturalistic music stim-
ulus. To this end we employed a novel paradigm combining
neuroimaging, computational acoustic feature extraction and behavior-
al psychology. Participants were scanned using fMRI while they freely
listened to the musical piece Adios Nonino by Astor Piazzolla. First,
inter-subject consistency on a voxel-by-voxel basis was evaluated
using mean inter-subject correlation as a measure. Following this, the
evolution of musical features in the piece was obtained using sophisti-
cated acoustic feature extraction procedures. Based on a perceptual
test we selected a set of six acoustic components representing the
main timbral, tonal, and rhythmic features present in this piece. Follow-
ing this, the neural underpinnings of these acoustic components were
investigated by correlating their time series with the time series of the
BOLD signal. Overall, our results highlighted the brain structures re-
sponsible for the processing of an extensive set of timbral, tonal and
rhythmic features. The results corroborate findings reported in previous
neuroimaging studies, which have used artificial and acoustically re-
duced conditions to investigate musical feature processing. Moreover,
they also highlight additional brain structures involved in musical fea-
ture processing. Timbral features activated mainly perceptual and
resting-state or default mode areas of the cerebrum and cognitive
areas of the cerebellum. In contrast, for tonal and rhythmic features,
we observed for the first time during listening to a naturalistic stimulus,

activations in subcortical emotion-related areas along with activations
in cognitive and somatomotor cerebrocortical areas.

Timbre-related acoustic components correlated positively with acti-
vations in large areas of the temporal lobe (STG, HG, and MTG) (see
Fig. 3). These areas were mostly activated during moments of high Full-
ness, Activity, Brightness and Timbral Complexity, which were often as-
sociated with quicker passages in the stimulus with several pitches
usually played by several instruments. While there exists a dearth of
studies regarding neural correlates of timbre processing in a musical
context, or polyphonic timbre processing, evidence from neural studies
on monophonic timbre has repeatedly pointed at the involvement of
the bilateral STG and HG (Caclin et al., 2006; Halpern et al., 2004). The
current findings suggest that the same brain areas are recruited in poly-
phonic timbre processing. As hypothesized based on Samson et al.
(2011), we found the caudolateral and anteriolateral parts of the STG,
specifically in the right hemisphere to be involved in timbral feature
processing. Furthermore, this finding also supports our hypothesis of
interhemispheric specialization in the auditory cortices with regard to
the processing of timbral features, with the right temporal lobe display-
ing larger areas with significant correlations with these features.

Negative correlations between timbral features of Activity and
Fullness and brain activity were observed in cerebrocortical regions
in the vicinity of the left superior frontal gyrus (BA 9), the left precu-
neus and surrounding parietal areas, and the ventral medial prefron-
tal cortex. These areas are known to be part of the default mode
network (DMN). The DMN is a neural circuit constantly monitoring
the sensory environment and displaying high activity during lack of
focused attention on external events (Fox et al.,, 2009; McAvoy et
al., 2008). As low values in Activity and Fullness were mostly associ-
ated with sections in the stimulus with sparse texture played by the
piano, thereby resulting in lower levels of auditory-cognitive load,
the activation of the DMN during these moments is in line with pre-
vious results (Levitin and Menon, 2003; Pallesen et al., 2009; Uddin
et al,, 2009). In the visual modality, a network comprising several
parietal areas such as the precuneus and the supramarginal gyrus
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has been found to be highly activated with reduced visual attention or
load (Hahn et al.,, 2006). Similarly, the left posterior cingulate, one of
the central structures of the DMN, was observed to be deactivated
during moments in the stimulus with high Brightness, which were
associated with the presence of several instruments playing simulta-
neously. This finding appears to be in line with those discussed by
Levitin and Menon (2003) regarding the deactivations in the posterior
cingulate cortex in response to taxing auditory and visual cognitive
tasks. Activations in the right putamen and the bilateral precentral
gyrus as well as the right medial frontal gyrus, which appear to be re-
lated to movement (Grahn and Rowe, 2009), were found to correlate
positively with Brightness and Activity, respectively. Uddin et al.
(2009) showed that these same motor-control areas are functionally
connected to the anticorrelated DMN associated with the posterior
cingulate cortex. Further research, however, is called for to clarify the
link between Brightness and motor-related brain activity.

In addition to the DMN, negative correlations for timbral features
of Activity and Fullness were observed in the somatosensory areas
(BA 2, 3 and 40). Previous studies investigating the mirror neuron
system (Keysers et al., 2010; Koelsch et al., 2006) found that the pri-
mary somatosensory (BA 2) and secondary somatosensory areas
were recruited while hearing sounds resulting from other people's ac-
tions. As nine out of the eleven participants reported playing the
piano as their primary or secondary instrument, one could postulate
that listening to the piano parts may have activated somatosensory
areas that would be active during actual piano playing.

Interestingly, areas of the cerebellum, including lobule VI, Crus I and
II, were found to be involved in processing timbre-related acoustic com-
ponents. According to a meta-analysis by Stoodley and Schmahmann
(2009), these areas are known to be the cognitive regions of the cere-
bellum. Additionally, the involvement of Crus I and II in conjunction
with the superior parietal lobule, lateral prefrontal cortex, and dorsal
premotor cortex, in processing high cognitive load in an auditory task
with chords was found by Salmi et al. (2010). As mentioned earlier,
high levels of Fullness and Activity in the stimulus were associated
with high levels of auditory-related cognitive load. Hence, our results
for the first time demonstrate the role of the cerebellum in cognitive
processing while listening to a naturalistic music stimulus.

Previously, the scarce attempts at identifying the neural struc-
tures responsible for tonality processing have utilized chord ca-
dences especially composed or simple and repetitive melody lines
(Janata et al,, 2002a, 2002b). In the present study, this implicit com-
plex cognitive skill has for the first time been investigated using
continuous expressive real music. Janata et al. (2002a, 2002b) iden-
tified the rostromedial prefrontal cortex as a possible brain substrate
for tonal encoding. While, contrary to our expectations, we failed to
find significant correlations either in that area or the hippocampus,
we observed that the time series for key clarity negatively corre-
lated with activations in the superior frontal gyrus (BA 9), previous-
ly related to beauty judgments of sound patterns (Kornysheva et al.,
2010), and several brain areas related to somatomotor processing,
particularly concentrated in BA 6 and 3 (the precentral and postcen-
tral gyri and the supplementary motor area) (see Fig. 4).

Importantly, we further found that decreasing clarity in the key
of the musical stimulus activated inner encephalic structures relat-
ed to emotion processing such as the claustrum and anterior cin-
gulate (Etkin et al., 2010). Among the auditory areas, only the
left HG and the bilateral rolandic operculum were activated during
processing music with unclear key. The rolandic operculum of the
premotor cortex is known to play an important role in speech ar-
ticulation and phonological rehearsal (Brown et al., 2005). Previ-
ous studies have further revealed that the rolandic operculum in
conjunction with the insular cortex is known to play an important
role in overt and covert singing (Jeffries et al., 2003). This activa-
tion, coupled with the ones in the precentral and postcentral
gyri, support the link between spontaneous singing and key

processing. However, further investigations are required to ascer-
tain this link. Koelsch et al. (2006) in their fMRI study contend
that the rolandic operculum in conjunction with the anterior supe-
rior insula, and ventral striatum are recruited in non-musicians
while processing pleasant music, in contrast to unpleasant highly
atonal counterparts (which were created electronically by pitch-
shifting thereby causing them to sound very unnatural or far
from ‘real world’ music). Based on our findings we could postulate
that the participants found the tonally less clear parts of the stim-
ulus to be more pleasant than the tonally more clear parts. This
finding could be explained in light of the theory advocated by
Meyer (1956) according to which one important device for elicit-
ing pleasurable emotions in music listening is the tension evoked
by the violation of expectations, such as when a key is unclear
due to the presence of complex harmonies (Sloboda, 1991). How-
ever, more studies with an ecological listening setting are needed
to clarify the relation between key clarity and emotion induction relat-
ed to violated expectation. Furthermore, the network of these brain
areas in conjunction with activations in the medial frontal brain regions
(BA 9), has been previously postulated to be involved in the processing
of affect-related evaluation and classification in music (Khalfa et al.,
2005) and with internal self-monitoring and evaluative processing, es-
pecially in an aesthetic context. For instance, activity in this region was
observed when asking subjects to judge the beauty of a painting or a
black-and-white abstract shape or even a rhythmic drum sequence
(Jacobsen et al., 2006; Kornysheva et al., 2010). These results further
hint at a link between key processing and aesthetic appreciation.

In line with our hypothesis, for the rhythmic component, Pulse
Clarity, we found correlations in the auditory cortices (BA 22 and
41), the motor cortex, basal ganglia structures (putamen), and several
regions of the limbic system (cingulate gyrus, insula) and the right
ITG (BA 37). While the activations in the areas of the auditory cortex
displayed positive correlations, the remaining areas correlated
negatively.

The negative correlation of Pulse Clarity with the putamen indi-
cates that it was highly activated during segments of the music with
unclear pulse, suggesting the participants were internally generating
the pulse during those moments (Grahn and Rowe, 2009). Important-
ly, the activations in interior brain structures belonging to the limbic
system in the vicinity of the amygdala, and the middle cingulate gyrus
in the vicinity of the supplementary motor area, have not been ob-
served to be active in previous studies where pulse was artificially
manipulated or where participants were asked to tap and extract
the pulse within complex rhythmic patterns. As Low Pulse Clarity im-
plies low temporal predictability, the present finding is in line with
that of Engel and Keller (2011), who report similar activations
when comparing temporally unpredictable improvizations with
their more predictable imitations. Blood and Zatorre (2001) found
that limbic and reward areas are recruited during music-induced
chills. In addition, they emphasize the similarity of these results to
those obtained from euphoria-related and pleasant emotion-related
brain imaging studies. Moreover, recent evidence suggests that
these inner brain structures are recruited especially during intense
pleasurable sensations to music (Salimpoor et al., 2011). In light of
these findings, one could postulate that lack of clarity in the perceived
pulse causes tension, which could be pleasurable thereby resulting in
the activation of reward circuits in their brains. The present study
thus demonstrates for the first time a neural link between rhythm
perception and activity of brain structures associated with emotions
in a realistic listening condition.

Interestingly, we found that the right ITG (BA 37) to be activated
during moments of Low Pulse Clarity. While the ITG (BA 37) has
been associated previously with visual processing, Levitin and
Menon (2003) found the left ITG to be more activated during scram-
bled music listening conditions in comparison to their unscrambled
counterparts. These findings hint at the possible role of the ITG in
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processing predictability of temporal order. However, this hypothesis
is open to question and requires further investigation.

With regard to inter-subject consistency, one could expect the
voxels that correlate significantly with the acoustic components to
display overall significant mean inter-subject correlations. Indeed
this was found to be true (see Appendix Table C.1). In particular the
timbral and rhythmic components displayed on average significant
mean inter-subject correlations. However, this was not true for Key
Clarity. This finding could be attributed to the fact that key can be
considered a high level musical concept, the processing of which is
based on schematic knowledge that emerges as a result of prior expo-
sure to music (Krumhansl, 1990). Consequently, one could assume
the presence of relatively large inter-individual variability in the pro-
cessing of Key Clarity (see Brattico, 2011; Brattico and Jacobsen,
2009).

Conclusions

To sum up, the current study introduced a new paradigm to inves-
tigate and predict the neural mechanisms related to the processing
of timbral, tonal, and rhythmic features while listening to a naturalis-
tic stimulus. A notable result of this novel naturalistic approach
employed is that, in addition to corroborating findings from previous
controlled settings, it revealed additional brain areas involved in
music feature processing. First, cognitive areas of the cerebellum as
well as sensory and DNM-related cortical areas were found to be in-
volved in timbral feature processing. Second, the results demonstrate
the recruitment of limbic and reward areas in the processing of musi-
cal pulse. Finally, processing of tonality was found to involve cogni-
tive and emotion-related regions of the brain. These findings
advocate the use of more ecological paradigms in future studies in
order to obtain a more comprehensive picture of music processing
in the brain.

As can be seen in Fig. 3, there exists considerable overlap in the
areas of the brain that correlate significantly with the timbral compo-
nents, especially Activity and Fullness. This overlap can be attributed
to the covariance in the acoustic components representing timbre
(see Appendix Table C.2). Covariance in acoustic features is inevitable
especially in naturalistic stimulus. Nevertheless, it is noteworthy that
there hardly exists overlap between timbral, rhythmic and tonal
components.

In addition to the aforementioned areas, high inter-subject con-
sistency was observed in some areas that failed to correlate signifi-
cantly with the present set of acoustic components. This finding
suggests that additional acoustic components are needed to account
for these stimulus-related activations. This calls for an expansion of
the acoustic feature set to obtain a more comprehensive picture of
processing of the musical elements in the brain. A potential con-
founding factor in the present paradigm is the covariance between
the acoustic components. The presence of between-component co-
variance would render it more demanding to tease out the unique
individual contributions of the components to evoked activations.
However the correlation between the acoustic components repre-
senting timbral, rhythmic and tonal aspects was found to be at
most moderate suggesting that they represented mutually relative-
ly independent musical aspects of the stimulus. Conducting further
experiments with larger sets of naturalistic stimuli representing, for
instance, different genres, as well as with musically untrained lis-
teners, would allow for generalizations concerning the brain net-
works involved in processing musical features in real time. In
addition, the results obtained in the present study using the data-
driven paradigm could serve as a basis for future hypothesis-
driven studies.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.neuroimage.2011.11.019.
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Appendix A
Acoustic features

The features were extracted from the stimulus on a frame-by-
frame basis (see Alluri and Toiviainen (2010) for more details). A
window length of 25 ms with a 50% overlap was used to extract the
short-term (timbral) features and a frame size of 3 s with a 33% over-
lap was used to extract the long-term (tonal and rhythmic) features.

A brief description of each of the acoustic features is presented
below. A detailed explanation can be found in the user manual of
the MIRToolbox (Lartillot and Toiviainen, 2007).

Loudness

Root Mean Square Energy: measure of instantaneous energy con-
tained in the signal, obtained by taking the square root of sum of the
squares of the amplitude.

Timbral features

Zero crossing rate (ZCR): number of time-domain zero crossings
of the signal per time unit.

Spectral centroid: geometric center on the frequency scale of the
amplitude spectrum.

High energy-low energy ratio: ratio of energy content below and
above 1500 Hz.

Spectral entropy: the relative Shannon entropy (1948) calculated
using the equation Eq. (A.1)

ﬁl Al logA[n]

He=— logN

(A1)

where A; is the amplitude spectrum of audio frame at time t and N is
the number of frequency bins in the amplitude spectrum. The relative
Shannon entropy indicates whether the spectrum contains predomi-
nant peaks or not. For example, a single sine tone has minimal entro-
py and white noise maximal.

Spectral roll-off: frequency below which 85% of the total energy
exists.

Spectral flux: measure of temporal change in the spectrum,
obtained by calculating the Euclidian distance between subsequent
window-based amplitude spectra.

Spectral spread: standard deviation of the spectrum.

Spectral flatness: Wiener entropy of the spectrum, defined as the
ratio of its geometric mean to its arithmetic mean.

Sub-Band Flux (10 features in total): measure of fluctuation of fre-
quency content in ten octave-scaled sub-bands of the spectrum
(Alluri and Toiviainen, 2010).

Roughness: estimate of sensory dissonance (Sethares, 1998).

Tonal features
Mode: strength of major of minor mode (Saari et al., in press).
Key clarity: measure of the tonal clarity (Gémez, 2006; Krumhansl,
1990; Saari et al., in press).

Rhythmic features
Fluctuation centroid: geometric mean of the fluctuation spectrum
representing the global repartition of rhythm periodicities within the
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range of 0-10 Hz, indicating the average frequency of these periodic-
ities (Pampalk et al., 2002).

Fluctuation entropy: Shannon entropy of the fluctuation spec-
trum (Pampalk et al., 2002) representing the global repartition
of rhythm periodicities. Fluctuation entropy is a measure of the
noisiness of the fluctuation spectrum. For example, a noisy fluctu-
ation spectrum can be indicative of several co-existing rhythms of
different periodicities, thereby indicating a high level of rhythmic
complexity.

Pulse clarity: estimate of clarity of the pulse (Lartillot et al.,
2008).

Appendix B
Estimation of effective degrees of freedom

Due to the presence of serial correlation, the number of effec-
tive degrees of freedom in the fMRI and acoustic component
time series is less than the total number of sample points. To esti-
mate the effective degrees of freedom, we employed an approach
similar to that adopted by Pyper and Peterman (1998). To this
end, we performed a Monte Carlo simulation using the approxi-
mation shown in the Eq. (B.1) to estimate the effective degrees
of freedom (df).

1. 1 2N—j .
ENN+N]ZTPXX(])pYYU) B.1

where pxx(j) is the normalized autocorrelation of the signal of N
observations at lag j. The maximal lag j chosen was N/5 because
it is known to yield relatively accurate results in terms of error
rates (Pyper and Peterman, 1998).

Estimation of cluster size threshold to correct for multiple comparisons

To obtain a cluster size threshold for multiple comparisons, we
used the approach proposed by Ledberg et al. (1998). This method
aims at finding an estimation of the distribution of cluster sizes
from which one can estimate the cluster size threshold to be
used to correct for multiple comparisons at any particular signifi-
cance level. In this approach, first, pseudo noise-Statistical Images
(pn-Sls), which contain the same spatial spectral properties as the
signal-Statistical Image (signal-SI) but contain no stimulus-
dependent activations, are used to obtain an estimate of the auto-
correlation function (ACF) kernel K. The pseudo noise-SI is created
as the Z-score statistic image obtained by randomly choosing a
subject's data, correlating it with the reversed and circularly
time-shifted acoustic component time series. Then, the ACF kernel
K is determined according to Eq. (B.2).

K = IFT|FFT(P)| B.2

where P represents the pseudo noise-Statistical Image. To account
for the variance in the estimate of the ACF, K is determined as an
average of all the ACF kernels obtained via a Monte Carlo simulation.
In order to create a Noise-Statistical Image (noise-SI), a randomly
generated image U is convolved with the ACF kernel, K, using
Eq. (B.3)

SI=UxK B.3

To estimate the distribution of the cluster sizes we generated 1000
Noise-SIs using the equation above. As a result, we obtained a cluster
size threshold of 22 voxels for p<.001 (Z=3.29).

Appendix C

Appendix Table C.1

Summary of mean inter-subject correlations within the areas correlating significantly
with each of the acoustic components. Columns two and three indicate the means and
standard deviations of the mean inter-subject correlation values across the voxels display-
ing significant correlations with each of the acoustic components. Columns four through
six indicate, for the voxels correlating significantly with each acoustic component, the per-
centage of voxels with significant mean inter-subject correlation (evaluated at p<.05,
p<.01,p<.001).

Inter-subject Overlap

correlation

Mean STD p<.05 p<.01 p<.001
Fullness 23" 14 86% 82% 78%
Brightness 227 13 92% 86% 79%
Timbral complexity 30" 12 99% 97% 95%
Key clarity .05 .03 36% 17% 3%
Pulse clarity 247 24 49% 47% 47%
Activity 237 14 88% 84% 80%
*HE p<.001.

Appendix Table C.2

Pearson's correlation coefficients (r) between principal component scores of the six
perceptually validated acoustic components. The significance values have been calcu-
lated based on the effective degrees of freedom.

Fullness  Brightness  Timbral Key Pulse
Complexity  Clarity  Clarity
Brightness 517%
Timbral complexity 33* —.21
Key clarity —.11 —.12 .02
Pulse clarity 49™* 24 —26 —.15
Activity 927 64 —27 —-12 50"

* p<.05. ¥* p<.01. *** p<.,001.
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